A chemical shell...

... composed of toxic and antifeedant substances that are excreted from their skin is used by nudibranchs Chromodoris norrisi to protect themselves against predators. These shell-less mollucs which live on the ocean bottom are know to excrete norrisolide, a rearranged diterpene (shown in yellow); the synthesis of this compound is described by E. Theodorakis and co-workers on page 7175 ff. The picture is courtesy of Professor D. John Faulkner (Scripps Institute of Oceanography).

NETHER

FRANCE

Belgium

Portugai

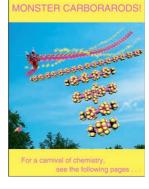
POLAND

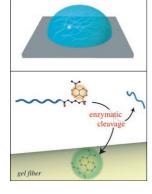
Sweden

CZECH

REPUBLIC

EUChemSoc


Chemistry—A European Journal is jointly owned by the 14 Chemical Societies shown above and published by Wiley-VCH. This group of Societies has banded together as the **Editorial Union of Chemical Societies (EU** ChemSoc) for its combined publishing activities.


Cooperative Effects

In the Concept by D. B. Grotjahn on page 7146 ff., the potential of bifunctional organometallic catalysts is described. He shows that polar pendant groups suitably placed near a transition-metal center show great promise for the activation and functionalization of nonpolar substrates.

High as a Kite!

In their Full Paper on page 7155 ff., M. F. Hawthorne et al. describe the synthesis of rigid, camouflaged carborarods, depicted here to have structures analogous in appearance to a Chinese dragon kite. These carborarods, containing B-permethylated para- and meta-carborane cages linked through their carbon vertices by butadiynylene linkers, are the longest discrete carborane-rod species available. Compared with unsubstituted analogues, they exhibit greater thermal and chemical stabilities through the operation of a steric "bumper-car" process and are more soluble in organic solvents.

A Unique Chip

I. Hamachi and co-workers describe on page 7294 ff., how a supramolecular hydrogel can be used successfully to construct a unique semi-wet enzyme/peptide chip that has potential applications in pharmaceutical research and diagnosis.

Chem. Eur. J. 2005, 11, 7135

www.chemeurj.org

